Assembly of Layered Monetite-Chitosan Nanocomposite and Its Transition to Organized Hydroxyapatite.

نویسندگان

  • Qichao Ruan
  • David Liberman
  • Yuzheng Zhang
  • Dongni Ren
  • Yunpeng Zhang
  • Steven Nutt
  • Janet Moradian-Oldak
چکیده

Bioinspired synthesis of hierarchically structured calcium phosphate (CaP) material is a highly promising strategy for developing improved bone substitute materials. However, synthesis of CaP materials with outstanding mechanical properties still remains an ongoing challenge. Inspired by the formation of lamellar structure in nacre, we designed an organic matrix composed of chitosan and cis-butenediolic acid (maleic acid, MAc) that could assemble into a layered complex and further guide the mineralization of monetite crystals, resulting in the formation of organized and parallel arrays of monetite platelets with a brick-and-mortar structure. Using the layered monetite-chitosan composite as a precursor, we were able to synthesize hydroxyapatite (HAp) with multiscale hierarchically ordered structure via a topotactic phase transformation process. On the nanoscale, needlelike HAp crystallites assembled into organized bundles that aligned to form highly oriented plates on the microscale. On the large-scale level, these plates with different crystal orientations were stacked together to form a layered structure. The organized structures and composite feature yielded CaP materials with improved mechanical properties close to those of bone. Our study introduces a biomimetic approach that may be practical for the design of advanced, mechanically robust materials for biomedical applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Glass Ionomer Cements with Improved Bioactive and Antibacterial Properties

Chen, S. 2016. Glass Ionomer Cements with Improved Bioactive and Antibacterial Properties. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1413. 62 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9670-8. Dental restorative cements are placed in a harsh oral environment where they are subjected to thermal shock, chemical degradatio...

متن کامل

Investigation of anti-microbial properties of chitosan-Tio2 Nanocomposite and its use on sterile gauze pads

Abstract Background and objectives: In this research, the formation of chitosan-TiO2 nanocomposite and its antibacterial effect on Escherichia coli and staphylococcus aureus was investigated Material and Methods: to study the results, we used Scanning electron microscopy (SEM) and transition electron microscopy (TEM) images, infrared (IR) spectroscopy and ultraviolet-visible. Optical Density (O...

متن کامل

Electrospun biocompatible Gelatin-Chitosan/Polycaprolactone/Hydroxyapatite nanocomposite scaffold for bone tissue engineering

In recent years, nanocomposite scaffolds made of bioactive polymers have found multiple applications in bone tissue engineering. In this study composite nanofibrous structure of gelatin (Gel)/chitosan (Cs)-polycaprolactone (PCL) containing hydroxyapatite (HA) were fabricated using co-electrospinning process. To assay the biocompatibility and bioactivity of electrospun nanocomposite scaffolds, t...

متن کامل

Electrospun biocompatible Gelatin-Chitosan/Polycaprolactone/Hydroxyapatite nanocomposite scaffold for bone tissue engineering

In recent years, nanocomposite scaffolds made of bioactive polymers have found multiple applications in bone tissue engineering. In this study composite nanofibrous structure of gelatin (Gel)/chitosan (Cs)-polycaprolactone (PCL) containing hydroxyapatite (HA) were fabricated using co-electrospinning process. To assay the biocompatibility and bioactivity of electrospun nanocomposite scaffolds, t...

متن کامل

Synthesis of Boron Nanocomposites Doped on the Hydroxyapatite-Chitosan Surface and Its Effect on the Microhardness of Demineralized Tooth Enamel

Background and Objective: Noninvasive treatments are preferred for tooth enamel remineralization, and metal nanocomposites could be used for this purpose. The present study investigated the effect of boron nanocomposites doped on the hydroxyapatite-chitosan surface on the microhardness of demineralized tooth enamel. Materials and Methods: In this laboratory study, boron nanocomposites doped on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • ACS biomaterials science & engineering

دوره 2 6  شماره 

صفحات  -

تاریخ انتشار 2016